Microalgae-Based Ethanol Fermentation from Defatted Biomass: A Preliminary Study

Sukmawati Usman, Maulina Agriandini

Abstract


The utilization of microalgae has been widely carried out, ranging from food, feed, and cosmetics to alternative energy. Microalgae is a potential biomass source with lipid content ranging from 7% to 23% and carbohydrate content ranging from 4.6% to 23%. Microalgae can be utilized as a source of pigments and antioxidants. The ability of rapid cell growth is an advantage for microalgae. In addition, microalgae have lower lignin content compared to macroalgae. Tetraselmis chuii and Porphyridium cruentum are microalgae species that are known to contain lipids and carbohydrates that have the potential to be further utilized in the production of biodiesel and bioethanol. This study was conducted to determine the potential of microalgae biomass in bioethanol production through the fermentation process. This study was conducted to determine the potential of microalgae biomass in bioethanol production through the fermentation process. The pre-treatment stage consisted of a delipidation process with hydrolysis. The pretreated biomass was then fermented using Saccharomyces cerevisiae culture. Glucose and bioethanol levels were then observed every 24 hours. This study showed that the optimum time for bioethanol fermentation was 24 hours. Based on the analysis conducted using Tetraselmis chuii and Porphyridium cruentum biomass, the delipidation efficiency was 29.6362% and 40.2667%, and the hydrolysis efficiency was 8.49% and 7.51%. The bioethanol levels at the optimum fermentation time based on the refractive index test were 5.8% and 6.0%. The bioethanol levels based on gas chromatography analysis were 0.299% and 11.221%. This study shows that microalgae biomass has the potential as a substrate in bioethanol production and can be a reference for microalgae biomass-based bioethanol production on a larger scale.


Full Text:

PDF

References


Agustini, N. W. S., & Febrian, N. (2019). Hidrolisis biomassa mikroalga porphyridium cruentum menggunakan asam (H2SO4 dan HNO3) dalam produksi bioetanol. Jurnal Kimia Dan Kemasan, 41(1), 1-10. https://doi.org/10.24817/jkk.v41i1.3962

Alhattab, M., Kermanshahi-Pour, A., & Brooks, M. S. L. (2019). Microalgae disruption techniques for product recovery: influence of cell wall composition. Journal of Applied Phycology 31 (1) 61–88. Springer Netherlands. https://doi.org/10.1007/s10811-018-1560-9

Anjos, L., Estêvão, J., Infante, C., Mantecón, L., & Power, D. M. (2022). Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX, 9 (2022) 101637. https://doi.org/10.1016/j.mex.2022.101637

Asada, C., Doi, K., Sasaki, C., & Nakamura, Y. (2012). Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Natural Resources, 03(04), 175–179. https://doi.org/10.4236/nr.2012.34023

Ashokkumar, V., Salam, Z., Tiwari, O. N., Chinnasamy, S., Mohammed, S., & Ani, F. N. (2015). An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conversion and Management, 101, 778–786. https://doi.org/10.1016/j.enconman.2015.06.006

Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1), 89–105. https://doi.org/https://doi.org/10.1016/j.biotechadv.2007.09.002

Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. In Applied Energy 86(11) 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015

Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. In Green Chemistry 15(3) 550–583. Royal Society of Chemistry. https://doi.org/10.1039/c2gc36364j

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776. https://doi.org/10.1002/bit.23016

Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. In Renewable and Sustainable Energy Reviews 14(2) 557–577. https://doi.org/10.1016/j.rser.2009.10.009

Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W., & Chang, J.-S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10. https://doi.org/https://doi.org/10.1016/j.bej.2013.03.006

Chen, W., Xu, S., Zou, S., Liu, Z., Liu, Y., Xu, H., Wang, J., Ma, J., Chen, R., & Zuo, Z. (2025). Carbohydrate and lipid yield in Microcystis aeruginosa for biofuel production under different light qualities. Biotechnology for Biofuels and Bioproducts, 18(1) 1-13 https://doi.org/10.1186/s13068-025-02615-8

Dragone, G., Fernandes, B. D., Vicente, A., Fernandes, B., Vicente, A. A., & Teixeira, J. A. (2014). Third generation biofuels from microalgae in Current research, technology and education topics in applied microbiology and microbial biotechnology. 1355-1366. World Scientific Publishing. https://www.researchgate.net/publication/236006059

El-Dalatony, M. M., Salama, E. S., Kurade, M. B., Hassan, S. H. A., Oh, S. E., Kim, S., & Jeon, B. H. (2017). Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies, 10(12) 2110. https://doi.org/10.3390/en10122110

Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238. https://doi.org/10.1126/science.1152747

Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750–8754. https://doi.org/10.1016/j.biortech.2010.06.100

Gerde, J. A., Montalbo-Lomboy, M., Yao, L., Grewell, D., & Wang, T. (2012). Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresource Technology, 125, 175–181. https://doi.org/10.1016/j.biortech.2012.08.110

Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732. https://doi.org/https://doi.org/10.1016/j.biotechadv.2012.01.001

Harun, R., & Danquah, M. K. (2011). Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 168(3), 1079–1084. https://doi.org/10.1016/j.cej.2011.01.088

Hasin, M., Gohain, M., & Deka, D. (2021). Bio-Ethanol Production from Carbohydrate-Rich Microalgal Biomass: Scenedesmus Obliquus. In M. Bose & A. Modi (Eds.), Proceedings of the 7th International Conference on Advances in Energy Research (pp. 1215–1224). Springer Singapore.

Hermanto, D. (2021). Penentuan Kandungan Etanol dalam Makanan dan Minuman Fermentasi Tradisional Menggunakan Metode Kromatografi Gas. Chempublish Journal, 5(2), 105–115. https://doi.org/10.22437/chp.v5i2.8979

IEA. (2023). World Energy Outlook 2023. Paris: IEA.

IPCC. (2021). Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/

Iryani, A. S. (2013). Pengaruh jenis katalis asam terhadap studi kinetika proses hidrolisis pati dalam ubi kayu. Iltek, 8(15), 1078-1081.

Khatoon, H., Haris, H., Rahman, N. A., Zakaria, M. N., Begum, H., & Mian, S. (2018). Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture Wastewater. Journal of Ocean University of China, 17(3), 641–646. https://doi.org/10.1007/s11802-018-3428-7

Kwangdinata, R., Raya, I., & Zakir, M. (2014). Production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method. The Scientific World Journal, 2014 (1) 231361. https://doi.org/10.1155/2014/231361

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. https://doi.org/https://doi.org/10.1016/j.pecs.2012.03.002

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. In Renewable and Sustainable Energy Reviews 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Megawati, Damayanti, A., Putri, R. D. A., Sari, P. N., & Fidyani, D. (2021). Kinetics study of enzymatic hydrolysis of Tetraselmis chuii using Valjamae model. IOP Conference Series: Materials Science and Engineering, 1053(1), 012044. https://doi.org/10.1088/1757-899x/1053/1/012044

Mubarok, A., Setyaningsih, I., & Uju, U. (2018). Karakteristik eksopolisakarida mikroalga Porphyridium cruentum yang berpotensi untuk produksi bioetanol. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 24-34.. https://doi.org/10.17844/jphpi.v21i1.21258

Mulyadi, D., Mulyani, R., & Hidayah, L. (2023). Pengaruh konsentrasi ragi (Saccharomyces cerevisiae) pada proses fermentasi limbah kulit buah sukun (Artocarpus altilis) dalam pembuatan bioetanol. Jurnal Energi Baru dan Terbarukan, 4(3), 154–161. https://doi.org/10.14710/jebt.2023.17708

Narendranath, N., Thomas, K., & Ingledew, W. (2001). Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. In Journal of Industrial Microbiology & Biotechnology 26(3), 171-177. www.nature.com/jim

Qaishum, F., Amri, A., & Utami, S. P. (2015). Hidrolisis mikroalga Tetraselmis chuii menjadi glukosa menggunakan solvent H2SO4 dengan variasi waktu hidrolisis. JOM FTeknik 2(1), 1-5.

Rahman, N. A., Khatoon, H., Yusuf, N., Banerjee, S., Haris, N. A., Lananan, F., & Tomoyo, K. (2017). Tetraselmis chuii biomass as a potential feed additive to improve survival and oxidative stress status of Pacific white-leg shrimp Litopenaeus vannamei postlarvae. International Aquatic Research, 9(3), 235–247. https://doi.org/10.1007/s40071-017-0173-2

Rokicka, M., Zieliński, M., Dudek, M., & Dębowski, M. (n.d.). Effects of ultrasonic and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. BioEnergy Research 14, 752-760. https://doi.org/10.1007/s12155-020-10202-y/Published

Russo, G. L., Langellotti, A. L., Verardo, V., Garcia, B. M., Oliviero, M., & Masi, P. (2024). Sustainable cultivation of Porphyridium cruentum via agro-industrial by-products: A study on biomass and lipid enhancement. Biocatalysis and Agricultural Biotechnology, 60, 103341. https://doi.org/https://doi.org/10.1016/j.bcab.2024.103341

Safi, C., Charton, M., Pignolet, O., Silvestre, F., & Vaca-Garcia, C. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Influ-ence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion. Journal of Applied Phycology, 25(2), 523–529. https://doi.org/10.1007/s10811

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. https://doi.org/10.1126/science.1151861

Spain, O., & Funk, C. (2022). Detailed Characterization of the cell wall structure and composition of nordic green microalgae. Journal of Agricultural and Food Chemistry, 70(31), 9711–9721. https://doi.org/10.1021/acs.jafc.2c02783

Tavakoli, S., Hong, H., Wang, K., Yang, Q., Gahruie, H. H., Zhuang, S., Li, Y., Liang, Y., Tan, Y., & Luo, Y. (2021). Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. Algal Research, 60, 102493. https://doi.org/https://doi.org/10.1016/j.algal.2021.102493

Tounsi, L., Ben Hlima, H., Fendri, I., Abdelkafi, S., & Michaud, P. (2024). Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media. Biomass Conversion and Biorefinery, 14(20), 26323–26340. https://doi.org/10.1007/s13399-023-04703-x

Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of biomass derived from cyanobacteria-based agro-industrial wastewater treatment and raisin residue extract for bioethanol production. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040486

UN. (2015). Transforming our world: the 2030 Agenda for Sustainable Development.

Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966. https://doi.org/https://doi.org/10.1016/j.biortech.2005.01.010

Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. In Renewable and Sustainable Energy Reviews 71, 475–501. https://doi.org/10.1016/j.rser.2016.12.076

Zhang, R., Grimi, N., Marchal, L., Lebovka, N., Vorobiev, E., & Zhang, M. R. (2019). Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Research 40, 101524




DOI: https://doi.org/10.35308/jpterpadu.v6i1.11968

Refbacks

  • There are currently no refbacks.


                                           Jurnal Perikanan Terpadu
                                e-ISSN: 2745-6587  I  DOI: 10.35308

Dept of Fisheries, Faculty of Fisheries and Marine Science, Universitas Teuku Umar
Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia
+62 852-5555-3040 l +62 852-1871-1142 l +62 813-6017-8635
License Creative Commons is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License