GEOMETRIC MORPHOMETRIC BANANA LEAF MIDRIB AS WIND TURBINE AIRFOIL PROFILE

Firlya Rosa, Priyono Sutikno, I Wayan Suweca, Mochammad Agoes Moelyadi

Abstract


Profil airfoil merupakan salah satu faktor yang mempengaruhi kinerja turbin angin sumbu horizontal. Sejumlah penelitian telah mengadopsi bentuk dan gerak binatang baik binatang air maupun binatang yang terbang. Anatomi alami pelepah daun pisang menjadi salah satu inspirasi untuk pemodelan profil airfoil. Profil pelepah dari tujuh sampel daun pisang dipetakan dengan menggunakan teknik morfometri geometrik berbasis landmark. Analisis sampel menggunakan metode statistik dan analisis aerodinamis airfoil menggunakan perangkat lunak QBLADE dengan perubahan bilangan Reynolds mulai dari 3E5 hingga 7E5 pada interval 1E5. Ada tujuh sampel dengan variasi profil dan variasi aerodinamis yang konstan. Dari hasil penelitian didapatkan bahwa semua model memiliki koefisien angkat tinggi, koefisien hambat rendah, dan glide ratio tinggi. Sampel 1 pada bilangan Reynolds 7E5 memiliki glide ratio tertinggi dengan nilai 123,07. Dari hasil analisa aerodinamis didapatkan bahwa dalam kondisi kecepatan angin rendah, profil airfoil berdasarkan morfologi pelepah pisang dapat diterima untuk turbin angin.

Full Text:

PDF

References


S. Huang, Y. Hu, and Y. Wang, “Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil,” Energy, vol. 214, p. 118179, Jan. 2021, doi: 10.1016/j.energy.2020.118179.

H. Yan et al., “Design approach and hydrodynamic characteristics of a novel bionic airfoil,” Ocean Eng., vol. 216, no. July, p. 108076, 2020, doi: 10.1016/j.oceaneng.2020.108076.

L. Xinyu, S. Bifeng, Y. Wenqing, and S. Wenping, “Aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics,” Chinese J. Aeronaut., Jan. 2021, doi: 10.1016/j.cja.2020.10.017.

W. Tian et al., “Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil,” Appl. Bionics Biomech., vol. 2017, 2017, doi: 10.1155/2017/8504638.

W. Tian, F. Liu, Q. Cong, Y. Liu, and L. Ren, “Study on aerodynamic performance of the bionic airfoil based on the swallow’s wing,” J. Mech. Med. Biol., vol. 13, no. 6, pp. 1–10, 2013, doi: 10.1142/S0219519413400228.

L. Hao, Y. Gao, B. Wei, and K. Song, “Numerical Simulation of Flow over Bionic Airfoil,” Int. J. Aerosp. Eng., vol. 2021, pp. 1–17, Sep. 2021, doi: 10.1155/2021/5556463.

M. I. Ansari, M. H. Siddique, A. Samad, and S. F. Anwer, “On the optimal morphology and performance of a modeled dragonfly airfoil in gliding mode,” Phys. Fluids, vol. 31, no. 5, p. 051904, May 2019, doi: 10.1063/1.5093230.

W. Liu and J. Gong, “Adaptive Bend-Torsional Coupling Wind Turbine Blade Design Imitating the Topology Structure of Natural Plant Leaves,” in Wind Turbines, 2011.

S. Wolff-Vorbeck, M. Langer, O. Speck, T. Speck, and P. Dondl, “Twist-To-Bend Ratio: An Important Selective Factor For Many Rod-Shaped Biological Structures,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-52878-z.

A. R. Ennos, “Compliance in plants,” Compliant Struct. Nat. Eng., vol. 20, pp. 21–37, 2005, doi: 10.2495/978-1-85312-941-4/02.

A. R. Ennos, H. Spatz, and T. Speck, “The functional morphology of the petioles of the banana, Musa textilis,” J. Exp. Bot., vol. 51, no. 353, pp. 2085–2093, Dec. 2000, doi: 10.1093/jexbot/51.353.2085.

A. R. Kothari and N. P. Burnett, “Herbivores alter plant–wind interactions by acting as a point mass on leaves and by removing leaf tissue,” Ecol. Evol., vol. 7, no. 17, pp. 6884–6893, 2017, doi: 10.1002/ece3.3249.

V. Viscosi, P. Fortini, D. E. Slice, A. Loy, and C. Blasi, “Geometric morphometric analyses of leaf variation in four oak species of the subgenus Quercus (Fagaceae),” Plant Biosyst., vol. 143, no. 3, pp. 575–587, 2009, doi: 10.1080/11263500902775277.

M. Webster and H. D. Sheets, “Webster_and_Sheets_2010 A practical Introduction to Landmark-Based Geometric Morphometrics.pdf,” Paleontol. Soc. Pap., vol. 16, pp. 163–188, 2010.

M. Vieira, S. J. Mayo, and I. M. de Andrade, “Geometric morphometrics of leaves of Anacardium microcarpum Ducke and A. occidentale L. (Anacardiaceae) from the coastal region of Piauí, Brazil,” Rev. Bras. Bot., vol. 37, no. 3, pp. 315–327, 2014, doi: 10.1007/s40415-014-0072-3.

Y. Savriama, “A Step-by-step guide for geometric morphometrics of floral symmetry,” Front. Plant Sci., vol. 9, p. 1433, Oct. 2018, doi: 10.3389/fpls.2018.01433.

V. Viscosi and A. Cardini, “Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners,” PLoS One, vol. 6, no. 10, p. 25630, Oct. 2011, doi: 10.1371/journal.pone.0025630.

E. M. Demmings et al., “Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved Shape Loci in Grapevine,” Front. Plant Sci., vol. 10, p. 1373, Nov. 2019, doi: 10.3389/fpls.2019.01373.

J. Ren, X. Ji, C. Wang, J. Hu, G. Nervo, and J. Li, “Variation and genetic parameters of leaf morphological traits of eight families from populus simonii × p. Nigra,” Forests, vol. 11, no. 12, pp. 1–17, 2020, doi: 10.3390/f11121319.

K. N. Blazakis, M. Kosma, G. Kostelenos, L. Baldoni, M. Bufacchi, and P. Kalaitzis, “Description of olive morphological parameters by using open access software,” Plant Methods, vol. 13, no. 1, p. 111, Dec. 2017, doi: 10.1186/s13007-017-0261-8.

T. M. Francoy, F. de Faria Franco, and D. W. Roubik, “Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini),” Apidologie, vol. 43, no. 6, pp. 609–617, Nov. 2012, doi: 10.1007/s13592-012-0132-2.




DOI: https://doi.org/10.35308/jmkn.v8i2.6095

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.