Tingkat Laju Korosi Atmosferik Baja Konstruksi di Lingkungan Pabrik Kelapa Sawit

Herdi Susanto, Joli Supardi, Sulaiman Ali

Abstract


 Environmental pollution that can cause atmospheric corrosion is the exhaust gas (exhaust fumes) generated from operating the palm oil industry. This atmospheric corrosion will reduce the volume and material mass of a machine component, so that if it reaches certain conditions the strength of the material will result in failure of industrial machine components. The corrosion rate of the construction steel can be measured using the weight loss method according to the ASTM G-50 standard and the ASTM G-1 standard. The research was conducted for one year and data collection was taken every month, the research location was at PT Agro Sinergi Nusantara Batee Puteh. The results of the study, the highest corrosion rate occurred in strip steel reaching 0.57 mpy in October and the lowest corrosion rate occurred for angled steel in September and cylindrical steel in May with a corrosion rate of 0.06 mpy.

 

Keywords atmospheric corrosion, palm oil industry, ASTM G-50, ASTM G-1, corrosion rate


Full Text:

PDF

References


J. Supardi and H. Susanto, “Analysis of Weight Loss Rates in Structural Steel Caused by Atmospheric Corrosion Based on the Distance from Coastlines Using Weight Loss Method,” in Seminar Nasional Tahunan Teknik Mesin (SNTTM) XVIII, 2019, p. 128, [Online]. Available: http://prosiding.bkstm.org/prosiding/seminar/2019.

A. Handbook, Corrosion: Fundatmentals, Testing, and Protection, Volume 13A. ASM International, 2003.

M. Zulfri, N. Ali, S. Fonna, S. Huzni, S. Mulyati, and B. Cut, “Atmospheric Corrosion Assessment of Structural Steel Exposed in The Environment of Palm Oil Processing (PKS) Industry Around Coastal Zone,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 536, no. 1, p. 12016.

H. Susanto, “Perilaku Kekuatan Lelah Baja Tahan Karat AISI 304 dalam Lingkungan Air Laut Buatan,” Tesis, Pasca Sarjana Universitas Syiah Kuala, Banda Aceh, 2012.

H. Susanto, M. Ridha, and S. Huzni, “Perilaku Lelah Baja Tahan Karat AISI 304 Dalam Lingkungan Korosif,” J. Tek. Mesin Pascasarj. Univ. Syiah Kuala Aceh, vol. 1, pp. 1–10, 2012.

J. Trethewey, K. R., Chambedain, Korosi untuk Mahasiswa dan rekayasawan. Jakarta: Gramedia Pustaka Utama, 1991.

H. Susanto, J. Supardi, M. Ridha, S. Huzni, and S. Fonna, “Laju Korosi Atmosferik Kawasan Pesisir dan Rural Di Kabupaten Aceh Barat Pasca Tsunami 2004,” J. Mekanova Mek. Inov. dan Teknol., vol. 2, no. 2, 2016.

J. Supardi, “Analisa Tingkat Korosi Atmosferik Pada Baja Struktural Dikawasan Aceh Barat dan Nagan Raya,” J. Mekanova Mek. Inov. dan Teknol., vol. 1, no. 1, 2015.

H. Susanto, J. Supardi, and S. Fonna, “Degradation of reinforced concrete corrosion on coast after the 2004 tsunami,” J. Corros. Sci. Eng., vol. 22, 2019.

H. Susanto, S. Huzni, and S. Fonna, “Corrosion of Reinforced Concrete Structures Submerged by the 2004 Tsunami in West Aceh, Indonesia,” Int. J. Corros., vol. 2018, 2018, doi: 10.1155/2018/4318434.

H. Susanto, M. Ridha, S. Huzni, and S. Fonna, “Korosi Infrastruktur Beton Bertulang di Kabupaten Aceh Barat Pasca Tsunami 2004,” 2015.

H. Susanto, P. Pribadyo, and R. Novizar, “Kemampukerasan Baja Tahan Karat AISI 304,” J. Mekanova Mek. Inov. dan Teknol., vol. 5, no. 2, 2019.

A. Standards, ASTM G-1 – 03 ASTM Standards, Vol 03.02, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. 1999.

A. Standards, ASTM G 50 – 76 ASTM Standards, Vol 03.02, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals. 1997.




DOI: https://doi.org/10.35308/jmkn.v6i2.2756

Refbacks

  • There are currently no refbacks.