Analisis Kinerja Algoritma Long Short-Term Memory (LSTM) untuk Prediksi Gempa Bumi di Aceh
Abstract
Full Text:
PDFReferences
Daftar Pustaka
S. J. Hutchings and W. D. Mooney, “The Seismicity of Indonesia and Tectonic Implications,” Geochemistry, Geophysics, Geosystems, vol. 22, no. 9, Sep. 2021, doi: 10.1029/2021GC009812.
N. Ainun, L. Husna Lubis, and R. Sirait Fisika, “Pemetaan Tingkat Rawan Gempa Berdasarkan Nilai Pga (Peak Ground Acceleration) Menggunakan Metode Mc. Guirre R.K Dan Donovan,” Agustus, vol. 8, no. 3, pp. 75–79, Aug. 2023.
R. Tauladani, N. Ismail, and D. Sugianto, “Kajian Seismisitas Dan Periode Ulang Gempa Bumi Di Aceh,” Pascasarjana Universitas Syiah Kuala, vol. 7, no. 1, pp. 44–50, 2015.
I. Rusydy et al., “Shallow crustal earthquake models, damage, and loss predictions in Banda Aceh, Indonesia,” Geoenvironmental Disasters, vol. 7, no. 1, Dec. 2020, doi: 10.1186/s40677-020-0145-5.
W. Triyoso and D. P. Sahara, “Seismic Hazard Function Mapping Using Estimated Horizontal Crustal Strain Off West Coast Northern Sumatra,” Front Earth Sci (Lausanne), vol. 9, Apr. 2021, doi: 10.3389/feart.2021.558923.
Novita Sari, R). Mengenang & refleksi diri 19 tahun tsunami Aceh (2004–2023) . (2023, 27 Desember). Diakses pada 3 Maret 2025, dari https://lldikti13.kemdikbud.go.id/2023/12/27/mengenang-19-tahun-tsunami-aceh/
Syamsidik, Nugroho, A., Oktari, R. S., & Fahmi, M. (2019). Aceh pasca 15 tahun tsunami: Kilas balik dan proses pemulihan. Tsunami and Disaster Mitigation Research Center (TDMRC), Universitas Syiah Kuala. Diakses pada 3 Maret 2025, dari https://bpba.acehprov.go.id/media/2022.09/buku_aceh_pasca_lima_belas_tahun_tsunami1.pdf
X. Wang et al., “Small Earthquakes Can Help Predict Large Earthquakes: A Machine Learning Perspective,” Applied Sciences (Switzerland), vol. 13, no. 11, Jun. 2023, doi: 10.3390/app13116424.
S. Bloemheuvel, J. van den Hoogen, D. Jozinović, A. Michelini, and M. Atzmueller, “Graph neural networks for multivariate time series regression with application to seismic data,” Int J Data Sci Anal, vol. 16, no. 3, pp. 317–332, Sep. 2023, doi: 10.1007/s41060-022-00349-6.
S. Hochreiter and J. Schmidhuber, “LONG SHORT-TERM MEMORY,” 1997.
A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Computers and Electrical Engineering, vol. 118, Sep. 2024, doi: 10.1016/j.compeleceng.2024.109409.
R. Fazira, D. Yudistira, and L. Sofinah Harahap, “Evaluasi Kinerja Model RNN & LSTM untuk Prediksi Magnitude Gempa di Indonesia,” Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer, vol. 2, no. 6, pp. 62–75, Nov. 2024, doi: 10.61132/mars.v2i6.498.
M. A. Rusho, R. Azizova, D. Mykhalevskiy, M. Karyonov, and H. Hasanova, “Advanced Earthquake Prediction: Unifying Networks, Algorithms, And Attention-Driven Lstm Modelling,” International Journal of GEOMATE, vol. 27, no. 119, pp. 135–142, Jul. 2024, doi: 10.21660/2024.119.m2415.
Roni Merdiansah, Khofifah Wulandari, Mentari Hasibuan, and Yuyun Umaidah, “Perbandingan Kinerja Model RNN, LSTM, dan BLSTM dalam Memprediksi Jumlah Gempa Bulanan di Indonesia,” Jurnal Penelitian Rumpun Ilmu Teknik, vol. 3, no. 1, pp. 262–277, Feb. 2024, doi: 10.55606/juprit.v3i1.3466.
B. Sadhukhan, S. Chakraborty, S. Mukherjee, and R. K. Samanta, “Climatic and seismic data-driven deep learning model for earthquake magnitude prediction,” Front Earth Sci (Lausanne), vol. 11, 2023, doi: 10.3389/feart.2023.1082832.
C. Olah, “Understanding LSTM Networks,” colah’s blog, Aug. 27, 2015. [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
DOI: https://doi.org/10.35308/jti.v4i2.12921
Jurnal Teknologi Informasi
e-ISSN: 2829-8934 I DOI: 10.35308
Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia
(0655) 7110535
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License







